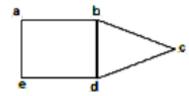
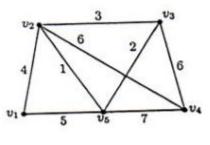
II B. TECH I SEMESTER REGULAR EXAMINATIONS, FEB - 2022 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (Common to CSE, INF, CSM, CIC, CSO and AID)

Time: 3 Hours Max. Marks: 70

Time: 5 Hours Max. Marks			rks: 70
		Note: Answer ONE question from each unit (5 × 14 = 70 Marks)	
		UNIT-I	
1.	a)	Define statement and explain various connectives with example.	[8M]
	b)	Explain Free and Bound variables.	[6M]
		(OR)	
2.	a)	Define Principle Disjunctive Normal Form (PDNF). Find the PDNF for (P^Q) V (^P^R) V (Q^R)	[7M]
	b)	Find whether the following arguments is valid (or) not:	[7M]
		• If a triangle has two equal sides, then it is isosceles.	
		• If a triangle is isosceles then it has two equal angles.	
		A certain triangle ABC does not have two equal angles. Therefore, twice als ABC does not be a two equal aides.	
		Therefore, triangle ABC does not have two equal sides. HANT H.	
2	۵)	UNIT-II Evaloin Dinary Operations on sets in brief	[/7][/[]
3.	a)	Explain Binary Operations on sets in brief	[7M]
	b)	Let A be a given finite set and p(A) its power set. Let \subseteq be the inclusion relation on the elements of p(A). Draw Hasse Diagram of $\langle p(A), \subseteq \rangle$ for (i) $A = \{a,b\}$; (ii) $A = \{a,b,c\}$; (iv) $A = \{a,b,c,d\}$	[7M]
		(OR)	
4.	a)	With suitable example explain Equivalence relations.	[7M]
	b)	Define Lattices. Explain Lattices properties with suitable examples.	[7M]
		UNIT-III	
5.	a)	Let S is a semi group. If for all $x, y \in s$, $x^2y = yx^2$ prove that S is an abelian group.	[7M]
	b)	Describe the properties of integers.	[7M]
		(OR)	
6.	a)	How sub group differ with Abelian group? Explain.	[7M]
	b)	Explain Fermat's theorem with example.	[7M]
		UNIT-IV	
7.	a)	Find the coefficient of x^9y^3 in the expansion of $(2x - 3y)^{12}$.	[7M]

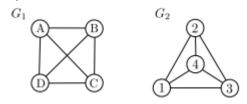

b) Write the step-by-step procedure for solving recurrence relation [7M] using generating functions and solve $a_n - a_{n-1} + 6a_{n-2} = 0$ for $n \ge 2$.

(OR)

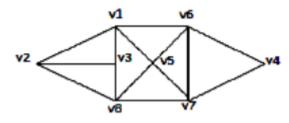

- 8. a) Describe Multinomial theorem. Find coefficient of x^{16} in $(1+x^3 + [7M x^8)^{10}$.
 - b) Find a general expression for a solution to the recurrence [7M] relation a_n - $5a_{n-1}$ + $6a_{n-2}$ = 4^n for $n \ge 2$.

UNIT-V

9. a) Is adjacency matrix and incidence matrix being same? Justify [7M] answer following figure.



b) Find the minimal spanning tree from the given graph by using Prim's algorithm [7M]


(OR)

10. a) Define the isomorphism of two graphs? Verify the two graphs [7M] are isomorphic (or) not?

b) Explain BFS for following graph.

[7M]

* * * * *